Thank you for this code. I made an indicator based on it which measures the median/mean length of zigzag moves:
45997512-ba86-4304-8451-bade15090c74-image.png
from collections import deque
import backtrader as bt
import numpy as np
__all__ = ['ZigZag', 'ZigZagLen', ]
class ZigZagLen(bt.Indicator):
params = (
## ZigZag inputs
('retrace', 0.05), # in percent
('minbars', 14), # number of bars to skip after the trend change
##
# ZigZagLen inputs
('full_init', True), #
('period', 6 * 90,), # 6*90 # positive number for rolling series, -1 for expanding series
('output', 'median'), # median or mean
('del_outliers', True),
('alpha', 0.05), # exponential smoothing input
)
lines = ('combined', 'bull', 'bear')
def __init__(self):
self.zigzag = ZigZag(retrace=self.p.retrace,
minbars=self.p.minbars, )
assert self.p.output in ['median', 'mean']
if self.p.output == 'median':
self.func = np.median
elif self.p.output == 'mean':
self.func = np.mean
self.stored_listlen = 0
if self.p.full_init:
assert self.p.period > 0, 'when full_init is enabled, we need a minimum period'
self.addminperiod(self.p.period)
def next(self):
zz = self.zigzag
l = self.l
llist = {l.combined: ['bull', 'bear'],
l.bull : ['bull'],
l.bear : ['bear'], }
# # No new values. Copying previous values instead of repeating calculations
if len(zz.lenlist) < self.stored_listlen:
for line in llist.keys():
line[0] = line[-1]
return
self.stored_listlen = len(zz.lenlist)
# Do we have at least something to work with?
if len(zz.lenlist) >= 8:
if self.p.del_outliers:
q1 = np.percentile(zz.lenlist, 25)
q3 = np.percentile(zz.lenlist, 75)
iqr = q3 - q1
upperlim = q3 + 1.5 * iqr
lowerlim = q1 - 1.5 * iqr
else:
upperlim = float('inf')
lowerlim = 0
lenlist = list(reversed(zz.lenlist))
if self.p.period > 0: # Rolling series
if sum(lenlist) > self.p.period:
# finding index of last value in our moving series
cumlst = np.cumsum(lenlist)
idx = np.where(cumlst > self.p.period)[0][0]
lenlist = lenlist[:idx]
# Getting the length of current move
last_len = InfoInt(zz.since_last_pivot)
last_len.bias = 'bear' if lenlist[0].bias != 'bear' else 'bull'
lenlist.append(last_len)
for line, bias in llist.items():
filter_lst = [v for v in lenlist if lowerlim < v < upperlim
and v.bias in bias]
output = self.func(filter_lst)
if np.isnan(line[-1]):
line[0] = output
else:
alpha = self.p.alpha
line[0] = line[-1] * (1 - alpha) + output * alpha
# inheriting allows us to add variables to an int
class InfoInt(int):
pass
class ZigZag(bt.Indicator):
'''
ZigZag indicator.
'''
lines = (
'trend',
'last_high',
'last_low',
'zigzag',
)
plotinfo = dict(
subplot=False,
plotlinelabels=True, plotlinevalues=True, plotvaluetags=True,
)
plotlines = dict(
trend=dict(_plotskip=True),
last_high=dict(color='green', ls='-', _plotskip=True),
last_low=dict(color='black', ls='-', _plotskip=True),
zigzag=dict(_name='zigzag', color='blue', ls='-', _skipnan=True),
)
params = (
('retrace', 0.05), # in percent
('minbars', 14), # number of bars to skip after the trend change
)
def __init__(self):
super(ZigZag, self).__init__()
self.addminperiod(self.p.minbars)
assert self.p.retrace > 0, 'Retracement should be above zero.'
assert self.p.minbars >= 0, 'Minimal bars should be >= zero.'
self.retrace_thresh = self.data.close * self.p.retrace / 100
self.minbars = self.p.minbars
self.count_bars = 0
self.last_pivots = deque([0, 0], maxlen=2)
self.last_pivot_t = 0
self.since_last_pivot = 0
self.lenlist = []
self.stored_datalen = 0
def prenext(self):
self.l.trend[0] = 0
self.l.last_high[0] = self.data.high[0]
self.l.last_low[0] = self.data.low[0]
self.l.zigzag[0] = (self.data.high[0] + self.data.low[0]) / 2
def next(self):
# No new candle. Got called due to resampling
if len(self.data) == self.stored_datalen:
return
self.stored_datalen = len(self.data)
curr_idx = len(self.data)
self.retrace_thresh = self.data.close[0] * self.p.retrace / 100
self.since_last_pivot = curr_idx - self.last_pivot_t
self.l.trend[0] = self.l.trend[-1]
self.l.last_high[0] = self.l.last_high[-1]
self.l.last_low[0] = self.l.last_low[-1]
self.l.zigzag[0] = float('nan')
# Initialize trend
if self.l.trend[-1] == 0:
# If current candle has higher low and higher high
if self.l.last_low[0] < self.data.low[0] and self.l.last_high[0] < self.data.high[0]:
self.l.trend[0] = 1
self.l.last_high[0] = self.data.high[0]
self.last_pivot_t = curr_idx
# If current candle has lower low and lower high
elif self.l.last_low[0] > self.data.low[0] and self.l.last_high[0] > self.data.high[0]:
self.l.trend[0] = -1
self.l.last_low[0] = self.data.low[0]
self.last_pivot_t = curr_idx
# Up trend
elif self.l.trend[-1] == 1:
# if higher high, move pivot location to current high
if self.data.high[0] > self.l.last_high[-1]:
self.l.last_high[0] = self.data.high[0]
self.count_bars = self.minbars
self.last_pivot_t = curr_idx
# elif at least p.minbars since last bull swing and currently in a retrace -> Switch Bearish
elif self.count_bars <= 0 and self.l.last_high[0] - self.data.low[0] > self.retrace_thresh \
and self.data.high[0] < self.l.last_high[0]:
self.switch_to_bear(curr_idx)
# elif bearish close
elif self.count_bars < self.minbars and self.data.close[0] < self.l.last_low[0]:
self.switch_to_bear(curr_idx)
# Down trend
elif self.l.trend[-1] == -1:
# if lower low, move pivot location to current low
if self.data.low[0] < self.l.last_low[-1]:
self.l.last_low[0] = self.data.low[0]
self.count_bars = self.minbars
self.last_pivot_t = curr_idx
# elif we had an established bear swing and currently in a retrace -> Switch Bullish
elif self.count_bars <= 0 and self.data.high[0] - self.l.last_low[0] > self.retrace_thresh and \
self.data.low[0] > self.l.last_low[0]:
self.switch_to_bull(curr_idx)
# elif bullish close
elif self.count_bars < self.minbars and self.data.close[0] > self.l.last_high[-1]:
self.switch_to_bull(curr_idx)
# Decrease minbars counter
self.count_bars -= 1
def switch_to_bear(self, idx):
self.l.trend[0] = -1
self.count_bars = self.minbars
self.l.last_low[0] = self.data.low[0]
self.l.zigzag[-self.since_last_pivot] = self.l.last_high[0]
self.last_pivot_t = idx
self.record_idx(idx, 'bull', )
def switch_to_bull(self, idx):
self.l.trend[0] = 1
self.count_bars = self.minbars
self.l.last_high[0] = self.data.high[0]
self.l.zigzag[-self.since_last_pivot] = self.l.last_low[0]
self.last_pivot_t = idx
self.record_idx(idx, 'bear', )
def record_idx(self, idx, bias, ):
self.last_pivots.append(idx)
last_move_len = self.last_pivots[-1] - self.last_pivots[0]
last_move_len = InfoInt(last_move_len)
last_move_len.bias = bias
self.lenlist.append(last_move_len)